

G5 Plus - Advanced Network Packet Broker - Overview June 2025

- Cubro Generation 5 (none +) was launched in 2018.
 - EXA48600 48 x 1G/10G & 6 x 40G/100G
 - EXA32100 32 x 40G/100G
- Based on Cavium Xpliant programmable chipset. Offered superior features compared to Broadcom chipset based products.
 - Tunnel termination and inside tunnel filtering
 - Number of simultaneous rules

What is Generation 5⁺ (G5+) of Advanced NPBs?

G5+ family consists of four products that are all based on latest generation of programmable Ethernet-Switch ASIC.

- EXA32100A 32 x 40G/100G & 2 x 10G/25G
- EXA64100 64 x 40G/100G & 2 x 10G/25G
- EXA32400 32 x 100G/400G
- EX48800 48 x 10G/25G & 8x 40G/100G

EXA64100

G5+ key points:

- Tunnel Termination
- State-of-the art VXLAN handling including VNI filtering
- Inner tunnel filtering
- Superior Load-balancing features including inner tunnel hashing
- More than 100k parallel filtering rules

Technical Details

The G5 Plus series is Cubro's market-leading Advanced Network Packet Broker, built on a state-of-the-art multi-core, programmable switch chip. It delivers unmatched performance with full hardware-level traffic filtering. With advanced tunnel decapsulation and inner tunnel filtering, it's ideal for modern overlay networks.

- **32 x 40G/100G** each of these ports can be used in 4 x 10G or 4 x 25G or 2 x 50G split mode.
- 2 x native SFP+/SFP28 ports for 10G/25G
- Each port can be used simultaneously as input and output and is totally independent of other ports
- Non-blocking architecture
 - 6,5 Tbit/s throughput
 - 2,4B pps packet forwarding
- All ports are included and open to 3rd party transceivers
- 6



- **64 x 40G/100G** each of these ports can be used in 4 x 10G or 4 x 25G or 2 x 50G split mode.
- 2 x native SFP+/SFP28 ports for 10G/25G
- Each port can be used simultaneously as input and output and is totally independent from other ports
- Non-blocking architecture
 - 12,9 Tbit/s throughput
 - 4,8B pps packet forwarding
- All ports are included and open to 3rd party transceivers

- 32 x 100G/400G via QSFP28/QSFP-DD
- 128 x 100G when 100G split mode is activated
- Each port can be used simultaneously as input and output and is totally independent of other ports
- Non-blocking architecture
 - 25,6 Tbit/s throughput
 - 6B pps packet forwarding
- All ports are included and open to 3rd party transceivers

- 4 x 1 Gbps / 10 Gbps / 25 Gbps full duplex ports for any kind of SFP/SFP+/SFP28
- 44 x 10 Gbps / 25 Gbps full duplex ports for any kind of SFP+/SFP28
- 8 x 40 Gbps / 100 Gbps full duplex ports for any kind of QSFP/QSFP28
- No transceiver vendor lock
- Each port can be used simultaneously as input and output and is totally independent from other ports
- Non-blocking architecture (4000 Gbit/s Throughput)
- Port Licensing Model available

Port licensing model only for EX48800

The EX48800 offers 4 different licensing models defining the number of available ports.

- EX48800-12 = last 12 x 25/10G ports + 8 x 40/100G activated
- EX48800-24 = last 24 x 25/10G ports + 8 x 40/100G activated
- EX48800-36 = last 36 x 25/10G ports + 8 x 40/100G activated
- EX48800-48 = all 48 x 25/10G ports + 8 x 40/100G activated

Unlicensed ports are blocked and cannot be used for any purpose like ingress, egress or loopback.

The port licensing model has no effect on the included features.

Pay only for what you need. A smart, cost-efficient approach tailored to your requirements.

G5 Plus - Highlights

- 10G/25G/50G/100G break-out mode
- Non-blocking
- Aggregation, Filtering & Load-balancing
- Buffer memory for burst protection
- Open for third party optical modules
- NTP and PTP synchronization
- TACACS+ and RADIUS Authentication
- SNMPv2c, SNMPv3 and RSyslog
- MS Excel filter upload
- Easy to use WebUI, RestAPI and CLI

- Packet Slicing in line rate on all ports for any packet size
- > 100k filtering rule capacity (IPv4 and Ipv6)
- Tunnel Termination and inside tunnel filtering
 - GRE, GTP, MPLS, MPLSoGRE,
 MPLSoUDP, VXLAN, ERSPAN, CFP
- Superior VXLAN traffic handling (VXLAN VNI & inner IP filtering simultaneously)
- Active Tunnel Endpoint / Termination & Encapsulation

General Features and Functions

 \mathfrak{D}

Straightforward operation via WebUI or CLI

• Straight and easy operation via WebUI or CLI; RestAPI available for easy system integration

← → C ▲ N	icht siche	r https://192.168.1.240/	/page/home			० ७ ४ 🛊 🛙 🍕	
🛟 CUBRI	5	Link Status					Image: mail of the second s
G Overview			act act act	ac7 a09 a011 a013 a015 a0	c17 QC19 QC21 QC23	0.025 0.027 0.029 0.031	
Ports	v						
Forwarding Policy	÷		QC2 QC4 QC6	QC8 QC10 QC12 QC14 QC16 QC	18 QC29 QC22 QC24	dese dese desa dess	
i≡ Rule Management	~						
Advance Function	×					Up Down	Welcome to the UNIX shell of this Cubro EXA32400. Please use it with care!!
🕼 System	Ŷ						
BB SNMP	×	System Information		System Status	Temperature		Access the Cubro CLI Shell to customize your device!
A User Management	×						> exmenu
	_	Hostname	EXA32400-Lab		Switch Junction	53°C	
	_	Product Name	EXA32400		Switch Outer	36°C	Last login: Mon May 22 05:11:27 2023 from 192.168.0.185 admin@EXA32400-Lab:~\$ sudo vtysh
	_	Serial Number	F98010256233A003	16% 7%	CPU	41°C	[suble password for admin:
	_	Version	V6.0R15P1 (Build: 20230515101024)		Front	29°C	EXA32400-Lab# configure terminal
		SDE Version	9.9.1	CPU Utilization Memory Utilization			EXA32400-Lab(config) # interface 1 EXA32400-Lab(config-if) # speed 100000 EXA32400-Lab(config-if) # exit
							EXA22400 Lab (config-1/# EALC

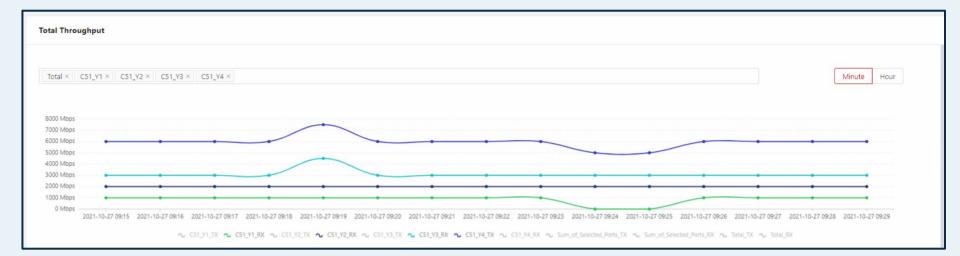
Forwarding Policy via drag & drop

Policy																
Choose Interf	ace															
	QC1	QC3	QC5	QC7	QC9	QC11	QC13	QC15	QC17	QC19	QC21	QC23	QC25	QC27	QC29	QC31
	QC2	QC4	QC6	QC8	QC10	QC12	QC14	QC16	QC18	QC20	QC22	QC24	QC26	QC28	QC30	1 3 2 4 QC32
	+ Forwa	rd Policy									Ingress I	Port∨				Q
								40								
				Port Gi	roup			40	1			ے Egre	ess Po	rt Grou	р	
													Ad	d Egress f	°ort Group	

Create filters with MS Excel® & upload to G5plus



 Filtering rules can be easily created and modified via MS Excel[®] and simply uploaded to the device.


Ingress Rule

Ingress Rule

	1	A	C E	F	G	K	L	M	N	0	Р	Q	R	S	Т	
	1	ace_id	i ingress_ports	action	egress_name	ethertype	match_vlan_1	match_vlan_2	match_vlan_3	match_vlan_4	src_ip	dst_ip	protocol	src_port	dst_port	
ily	3	105001		forward		double-vlan	100									
5	4	105002		forward		double-vlan		1000)							
	5	105003		forward		single-vlan	500				10.0.0.1					
	6	107001		forward								10.0.0.2				
	7	107002		forward									udp	2152		
		107003		forward									udp		80	
	9	107004		forward	C32						10.0.0.3		udp	1000	1100	
		105004		deny		single-vlan	500				10.0.0.4		udp	1000	1100	
		105005		forward		double-vlan	700									
		105006		forward		double-vlan		1300)							
		105007		forward		single-vlan	1500				123:4567:8910:1112:1314:1516:0:3					
	14	107005	101	forward	(32							123:456		112:1314::		
													udp	2153		
											123:4567:8910:1112:1314:1516:0:7		udp udp	1200	81 1300	
											123:4567:8910:1112:1314:1516:0:4		udp	1200	1300	
											123.4307.8310.1112.1314.1310.0.4		uup	1200	1300	
											10.0.0.4					
						lan	100	200	300	400	10.0.0.4					

Graphical Throughput per port

Port utilization over time to visualize traffic trends early.

SNMP management integration and supervision

SNMPv2c and v3 is supported and thus G5 plus can be easily integrated into any SNMP supervision system. MIB file is provided by Cubro.

MP Config			Syst
SNMP Server Config	SNMP V3 Users SNMP Trap Config		
* OID	32182	1-99999	
System Location		Vienna	
System Contact		support@cubro.com	
User Description			
* Snmp Port	161	161	
* SNMP Community	cubro		
	+		
	Confirm Cancel		

System Trap Config		
Power:		
Fan :		
Module Optical Power:		
Temperture :	70	°
Module Temperture :	85	℃
CPU Utilization:	100	%
Memory Utilization:	100	%
	Confirm	
	Cancel	

For Fault (SNMP trap) and Performance (SNMP get) Management

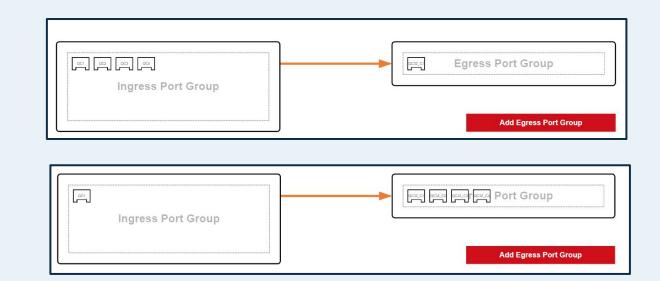
* Source:	All	~	* Level :	ERR V	
* Server IP:	192.168.0.185		* Port:	514	
* Proto:	UDP	~			

Completely user configurable Syslog

Other platform features

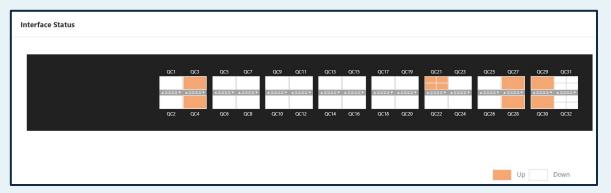
- NTP & PTP time synchronization
- Activity Log
- Automatic Backups
- Security hardened, passed successfully several rounds of in-depth PEN tests at a major European telecom operator

Global Confi	g WEB L	og					
Ехро	rt Excel	ar					
Ro w ≑ ID	Userna me	Date ≑	IP	Mod ule ≑ ≆	Opera te	Result 👻	Log
1	admin	2023-05-25 16:37	10.0.8.3	Forwardin g Policy	UPDATE	FAILED	Edit a forwarding policy whose ingress port group is QC31_C1.
2	admin	2023-05-25 16:37	10.0.8.3	Forwardin g Policy	CREATE	SUCCESS	Create a forwarding policy whose ingress port group is QC9,QC10,QC11,QC12.
3	admin	2023-05-25 16:36	10.0.8.3	Forwardin g Policy	CREATE	SUCCESS	Configure the type of the egress port group as copy.The egress port group is: [QC13,QC14].


Aggregation, Filtering, Load Balancing and much more

 \mathfrak{S}

All kinds of aggregation supported :


- Many to One
- One to Many
- Many to Many

Split mode - E.g. 400G into 4 x 100G

	Interface Co	onfig										
💱 CUBRO	🖸 Display/	Hide Columns	Multi-interfaces	Config								
☆ Overview												
	Port ID 💲	Enable	Туре	Category	Hash Mode	Speed (Mbps)	Split	Split Speed	FEC	Mirror TX	Mirror RX	Hash Seed
Ports ^												
Config	QC21		Ingress Port∨	mixed∨	l3-src-dst∨	400000 ∨	4∨	100000 ^				0
Statistics	QC22		Ingress Port∨	mixed∨	l3-src-dst∨	100000 ∨	0~	100000			~	0
								100000				
Forwarding Policy	QC23		Ingress Port∨	mixed ∨	l3-src-dst∨	400000 ∨	0~	- v		V	\sim	0
😑 Rule Management 🛛 🗸									0.000			

Filtering parameters

• Layer 2

- MAC, VLAN (up to 4 tags)
- Ether type
- VXLAN VNI

• Layer 3

- Protocol
- DSCP
- IPv4/IPv6 Address
- Fragments
- Layer 4
 - Port Number
 - TCP Flag
- Payload
 - ASCII string / Hex pattern

Port Config				
		+ Add		
v C1 X				Ū
Ingress Filter Mode	🔵 Tunnel Oute	r Layer 💿 Tunnel Inr	ner Layer	
LoadBalancing Mode	 Tunnel Oute 	r Layer ု Tunnel Inr	ner Layer	
Tunnel Strip	GTP GRE IPinIP CFP	VXLAN ERSPAN II MPLS-in-GRE	MPLS ERSPAN III MPLS-in-UDP	
	C	Confirm		

• Ingress Filtering

Egress Filtering

 Middle-stage filtering (via Loopback port function)

Feed only relevant traffic to the probe/analyzers

High number of parallel filtering rules

Number of Rules	Filtering parameter
2048	MAC Addresses
102400	IP Addresses, Protocol type, Port Nr. (five tuple)
2048	Any filtering parameter excluding MAC and String.
8172	Any filtering parameter excluding MAC, VLAN ID and String
1025	ASCII string or Hex Pattern inside payload with defined offset

Rule Configuration												
Vildcard	Accurate	MA	C Stri	ng								
Add Rule 🕑 Display/Hide Columns Rule ID)uery		
	Rule ID	Rule ID Valid						Filter Key				
	Hale 15	Valid	Асе Туре	IP Version	Source IP	Destination IP	Protocol	DSCP	Frag	Source Port	Destination Port	Тср
	300	\checkmark	ip	ipv4 V	10.0.0.1/22			udp	none∨			

ASCII string / Hex pattern filtering inside payload

- Filter not only on packet header fields like MAC Address, IP Address or TCP/UPD port numbers but also inside the payload.
- The ASCII string filter functions allows searching for keywords or hex patterns at a defined offset
- E.g. filter out all http "GET" messages from a packet stream.

F	Rule Co	nfiguration			
W	ildcard N	Accu	urate Match	MAC	String
	Add Ru	ile 🛛 🖾 Display	/Hide Columns	5	
			а. т.		Filter Key
		Rule ID	Асе Туре	Offset	Filter Value
		114689	string	0	GET

Use-case: filter-out 5G user-plane via extended GTP-U header, separate 3G/4G from 5G user-plane

Encapsulated / Tunneled traffic handling

In modern overlay communication networks, packets are usually encapsulated in tunnels. Typical encapsulations used are VXLAN, GRE or ERSPAN.

Г		VXLAN	Tunnel		original packet				
								٦	
	MAC	IP	UDP (Port 4789)	VXLAN VNI	MAC	IP	TCP/UDP	Data	
L	15	outer IP		k dk	inner IP				

Challenges & Solutions

- Information of interest is hidden inside tunnel. E.g. DNS information inside VXLAN tunnel (outer UDP port 4789, inner UDP port 53). Requires inner tunnel filtering
- Analytics/Probes cannot handle tunnel information or gives misleading results when tunnel is present. Requires tunnel removal.
- In many (or all) instances, session-aware load-balancing using outer IP is ineffective. Typically, sessions rely on inner IP rather than outer IP. It is necessary to utilize inner tunnel information for load-balancing purposes.
- 26

Allows to **remove** a wide variety of **tunnel encapsulations** by simply selecting the tunnel type that should be stripped off and that are not required / unwanted by monitoring tools.

ort Config				
	+	Add		
♥ QC31_C1 ×				Ū
Ingress Filter Mode	• Tunnel Outer	Layer 🔿 Tunnel Ir	iner Layer	
LoadBalancing Mode	• Tunnel Outer	Layer 🔵 Tunnel Ir	nner Layer	
Tunnel Strip	GTP GRE IPinIP CFP	VXLAN ERSPAN II MPLS-in-GRE PPPoE	MPLS ERSPAN III MPLS-in-UDP	
	Col	nfirm		

Outer or inner tunnel filtering

G5 plus series provides support for filtering on outer or inner tunnel packet parameters.

	▼ [C1 ×]							
		Ingress Filter Mode Tunnel Outer Layer Tunnel Inner Layer LoadBarancing Mode Tunnel Outer Layer Tunnel Inner Layer 						
	í	Tunnel Strip	GTP GRE IPinIP CFP	VXLAN ERSPAN II MPLS-in-GRE	MPLS ERSPAN MPLS-in	22123		
	ļ			Confirm				
MAC	IP	UDP (Port 4789)	VXLAN VNI	MAC	IP	TCP/UDP	Data	

Load-balancing

Load-balancing is a vital function to distribute traffic across different monitoring tools evenly and correctly. The Cubro G5+ series supports **session-aware load balancing.** With this feature of the G5+, every packet that belongs to the same conversation/flow is sent to the same physical output port within a load-balancing group.

QC20

Egress Confi	iguration	
	Egress Port	QC20 × QC22 × QC23 × Port Config
	Egress Type	Copy Copy Load Balance Super Group
	Туре	🔵 Dynamic 💿 Flexible 🔵 Static
	Port Weight	QC20 QC22
Port Group		QC23
Add Egrees Port (100000	

QC7 QC8 QC9

Ingress Port Group

Session-aware load balancing & Hash-key calculation

Hash-keys are used to define the load-balancing behaviour among the various members (=ports) in the load-balancing group. For example, if hash-key is configured as IP Source and IP Destination Address, then for the hashing calculation only IP Source and IP Destination values are used. Therefore, all packets (=up and downstream) will be available at the same physical output port.

	upstream		\sim				
Cubro TAP	downstream			Source	Destination	Hash-key Result	Physical Output Port
		Communication Matrix		A	В	Х	1
IP Src & IP Dst Symmetric		B		В	A	Х	1
Hashing Cubro Load-balancing		A		A	C	Υ	2
↓ → B ▲ ←	C	C		C	A	Y	2
packets All pack /from B A to/fro							

Hash-key calculation settings

Interface Config						
Display/Hide Colum	nns Multi-inter	faces Config				
Port ID 👙	Enable	Туре		Categ	ory	Hash Mode
C1	\checkmark	Ingress Port	V	mixed	~	β-src-dst ∧
C2	\checkmark	Ingress Port	V	mixed	V	l2-src-dst l3-src
C3	\checkmark	Ingress Port	V	mixed	v	l3-dst l3-src-dst
C4	\checkmark	Ingress Port	V	mixed	V	four-tuple five-tuple

Full flexibility to cope with all needsIndividual setting per port

Hash-key calculation methods

Hash-key calculation method	Hash-key calculation based on	Remark
l2-scr-dst	full MAC Src & MAC Dst Addr	
l3-src	full IP Src Addr	
l3-dst	full IP Dst Addr	
l3-src-dst	full IP Src & IP Dst Addr	Upstream & downstream direction give SAME
four-tuple	full IP Src & Dst Addr & Layer 4 Src & Dst Port	hash results -> upstream & downstream stay together-> session aware E.g.
five-tuple	full IP Src & Dst Addr & Protocol & Layer 4 Src & Dst Port	10.0.0.1 talks to 10.0.0.2: Hash result = x 10.0.0.2 talks back to 10.0.0.1: Hash result = x

Encapsulated / Tunneled traffic

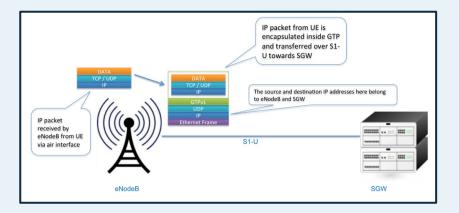
In modern overlay communication networks, packets are usually encapsulated in tunnels. Typical encapsulations used are VXLAN, GRE or ERSPAN. Problem is that **several levels of IP** are used.

Avoid Using Outer IPs as hash-criteria

Outer IPs belong to the overlay network and offer limited variation. Relying on them for load balancing can lead to asymmetry and poor traffic distribution. Optimal load balancing needs diverse IP combinations.

A session is usually based on the inner IP (user IP) but not on outer.

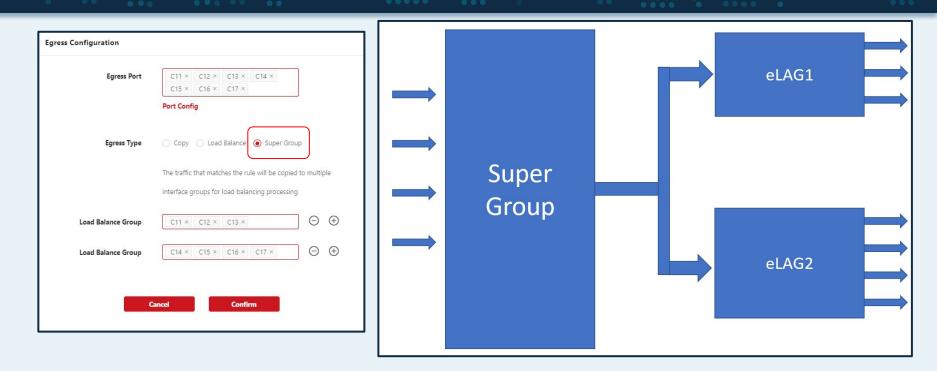
Cubro offers the choice


Cubro Advanced NPBs offer the choice to use outer tunnel or inner tunnel information for load-balancing.

C1 ×					
Ingress Filte	er Mode 💿 Tun	nel Outer Layer	Tunnel Inner Layer		
LoadBalancin	g Mode 💿 Tun	nel Outer Layer	Tunnel Inner Layer		
Tunr	nel Strip GTF	IP	VXLAN ERSPAN II MPLS-in-GRE	MPLS ERSPAN III MPLS-in-UD	P
			Confirm		

MAC	IP	UDP (Port	VXLAN VNI	MAC	IP	TCP/UDP	Data
	1.11	4789)					Data

Load-balancing mobile GTP-U traffic



GTP is used in mobile networks to transport packets from the NodeB to the internet via an IP tunnel. Load-balancing could be based on outer IP Addresses which are the IP Addresses of the eNodeBs and SGWs. The problems using the outer tunnel for the hash-key calculation are:

- Limited IPs \rightarrow **Asymmetric Load** Few IP addresses can cause uneven traffic distribution.
- When the outer tunnel IP changes (e.g. due to eNodeB change), the hash key result changes, and the session shifts to a different output port. This breaks session continuity from the user perspective, making **load-balancing non-session-aware** and increasing the processing effort needed for correlation and call analysis.

Solution: Use inner IP Address = user IP

Load-balancing to multiple groups



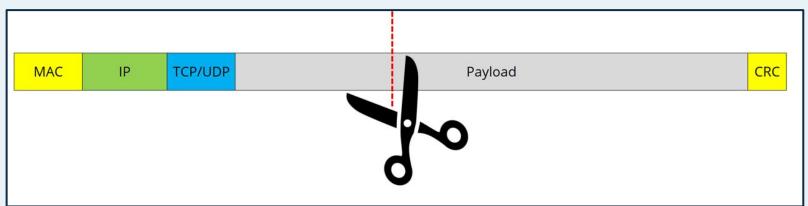
Distribute traffic to parallel analytic tools

Traffic handling when an output ports fails

Cubro's Advanced NPBs support different types of load-balancing modes to protect against port failures.

Don't lose traffic when a probe/analyser port fails

Fail-safe Load Balancing

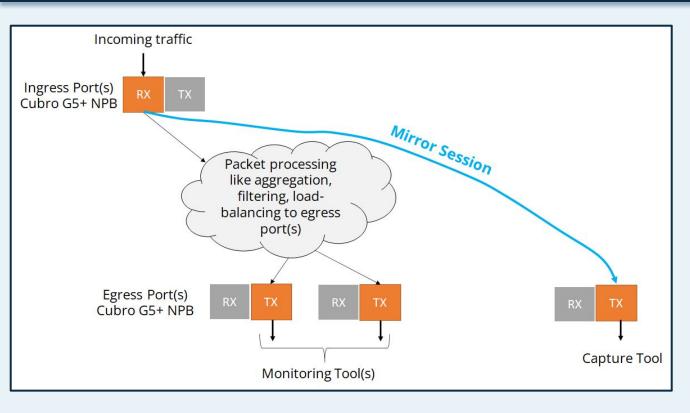


Fail-safe Mode Normal Incoming Fail-safe mode only re-distributes the Sessions traffic of the failed port to the other ports within the group and only the sessions of the broken port are redistributed. Egress port fails 3 4 Don't lose traffic when a probe/analyser port fails!

Slicing for any packet size to reduce output bandwidth

- Cubro G5+ Advanced NPBs allow to set the slicing size to **any** value between 64B and 9192 Byte.
- FCS is automatically corrected; all other fields inside the packet stay unchanged.

Reduces the output bandwidth sent to analytics and probing by removing parts of a packet that are not needed.


- Replies to incoming ARPs and Pings
- Every port with its **own** IP Address & MAC Address

GRE Tunnel Port									
GRE Tunnel Port									
🛛 Displ	ay/Hide Columns	Create Tunnel Choose	e All		II	Query			
	ID \$	Port ID	Local MAC	Remote MAC	Local IP	Remote IP			
	2		00:00:00:00:00:02	00:00:00:00:11	10.0.0.2	100.100.100			
	1		00:00:00:00:00:01	00:00:00:00:11	10.0.0.1	100.100.100			
Confirm Cancel									

Mirror function to easily add an output port for troubleshooting purposes

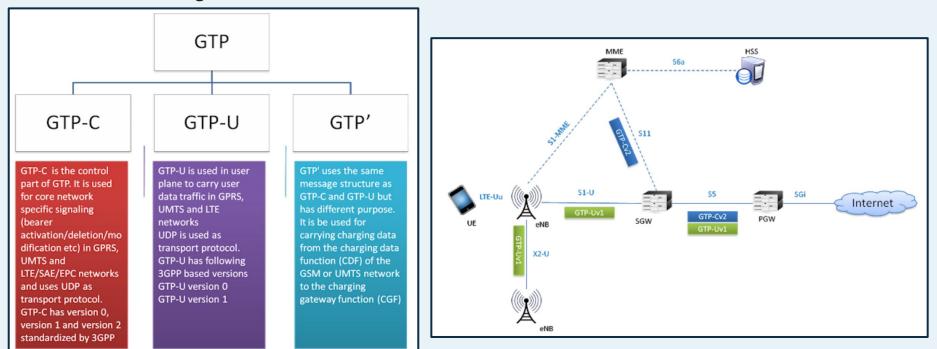
- Mirror RX port to output
- Mirror TX port to output
- Reduce mirrored output via filtering to reduce traffic load

Easy output port redundancy

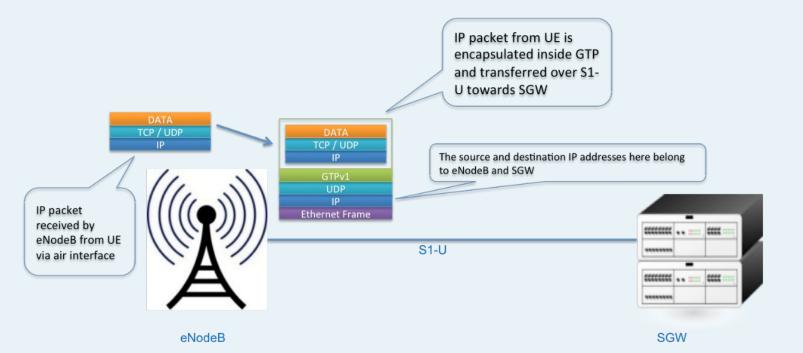
Allows to define spare port for any output port. When main output port fails, traffic is moved to backup port within **milliseconds**.

Also possible for complete load-balancing groups.

Port				
🗹 Dis	splay/Hide Columns Add	Delete	Spare∨	٩
Cance	l Choose All			
	Port	Spare	Spare Work Type	Linkages
	QC10 V	Port: QC11 V	v	


G5+ GTP Functions/Applications

 \mathfrak{D}


GTP Overview

GTP = GPRS Tunneling Protocol

GTP-U Overview

GTP is used to transport packet data from the eNodeB to the SGW via an IP tunnel.

45

GTP-U = is the user-plane (where the user traffic is transported)

- Frame 3: 132 bytes on wire (1056 bits), 132 bytes captured (1056 bits)
- Ethernet II, Src: Azurewav_ce:5d:f9 (00:25:d3:ce:5d:f9), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
- Internet Protocol Version 4, Src: 212.129.65.23, Dst: 212.129.65.81
- User Datagram Protocol, Src Port: gtp-user (2152), Dst Port: gtp-user (2152)
- GPRS Tunneling Protocol
- Internet Protocol Version 4, Src: 192.168.111.20, Dst: 192.168.111.255 GTP inner IP
- User Datagram Protocol, Src Port: netbios-ns (137), Dst Port: netbios-ns (137) GTP inner TCP/UDP
- NetBIOS Name Service

GTP-C = is the control plane of the protocol; Note that GTP-C does not have an inner IP

- Frame 1: 201 bytes on wire (1608 bits), 201 bytes captured (1608 bits)
- Ethernet II, Src: Azurewav_ce:5d:f9 (00:25:d3:ce:5d:f9), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
- Internet Protocol Version 4, Src: 212.129.65.13, Dst: 212.129.65.65
- User Datagram Protocol, Src Port: gtp-control (2123), Dst Port: gtp-control (2123)
- GPRS Tunneling Protocol

Separate 4G / 5G User plane

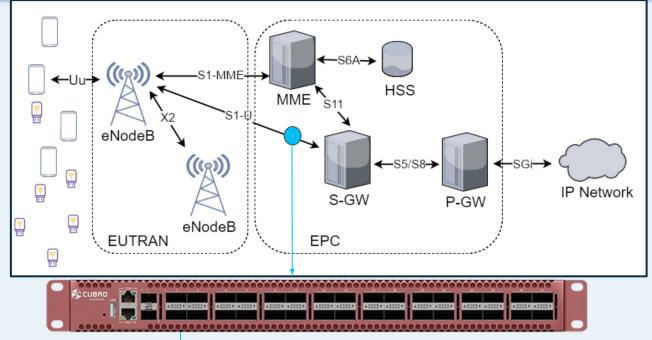
Usually filtering of user-plane is done via UDP Port 2152 which defines user-plane traffic but UDP Port 2152 is used for 3G, 4G as well as 5G. So filtering on UDP Port 2152 is not the right solution to get only 5G user-plane.

But 5G user-plane traffic is usually using a GTP extension header:

Add Rule C Display/Hide Columns Add Rule C Display/Hide Columns 0 81 09 09 02 88 09 45 58 09 09 16 11	<pre>> Ethern > 802.1Q > 982.1Q > 998.1Q > 998.1</pre>	et II, Src: H Virtual LAN, Virtual LAN,	uaweiTe_b8:81: PRI: 0, DEI: PRI: 0, DEI: ersion 4, Src: col, Src Port: pcol	35 (24:44: 0, ID: 2 0, ID: 2 172.30.81 2152, Dst Wi fu is se	27:b8:81:35), .159, Dst: 172 Port: 2152	e stri n the ctly s e 5G	ing fi G5+ fron	ilter serie d to)	Internet Protocol Version 4, Src: 172.30.81.159, Dst: 172.20.174.58 User Datagram Protocol, Src Port: 2152, Dst Port: 2152 GPRS Tunneling Protocol Flags: 0x36 Message Type: T-PDU (0xff) Length: 60 TEID: 0x004abcd7 (4898007) Sequence number: 0x66d9 (26329) Next extension header type: PDU Session container (0x85) Extension header (PDU Session container) Internet Protocol Version 4, Src: 10.165.242.222, Dst: 213.94.75.78
	Add Rule	e 🕑 Displa	y/Hide Columns Ace Type	Filt	er Key	Han	dle	Tunnel Enc.	apsulation	9020 3f 64 <u>ac 1a 51 9f ac 14 ac 33 96 56 98 96</u> 96 4c 2d · Q·····hh·L 9030 90 96 <u>56 f 90 23 c0 43 ac 27 05 6d 98 99 <u>56</u> 11 9 · · · c1 → f • <mark>1</mark> · · 9040 91 90 45 90 90 34 <u>ba 34 ac 97 97 46 96 97 5f 9a 35 · · E··4 4 @ @ r</u>_·· 9050 4d 2d d5 5e 4h 4e b7 4e 1b 3d b8 22 bb 7a 13 · ···CM·H 1 · ···(z) 9050 4d 27 80 19 3f d6 d0 93 90 90 e1 01 98 9a 14 af <u>@</u>··?······</u>

Cubro G5 Advanced GTP Applications

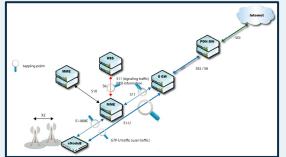
- GTP-U tunnel termination
 - Remove GTP-U tunnel header
- GTP-U Inner IP filtering including IP range filtering
 - Drop traffic by simple inner IP filtering to avoid overload on monitoring probes
- GTP-U Inner Layer 4 (application) filtering
 - Filter directly on S1-U interface and feed the traffic to the right monitoring system
- GTP-U load-balancing
 - Balance output traffic to probes by means of inner IP address

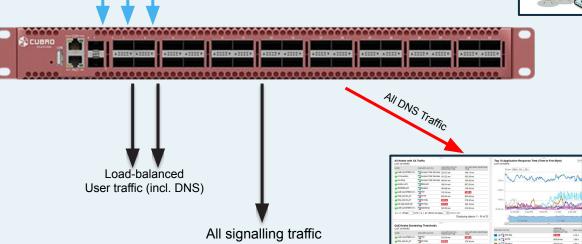

All in full line-speed without throughput restrictions

GTP Inner IP Range Filtering

Reduce the load to the monitoring probes by dropping non required traffic.

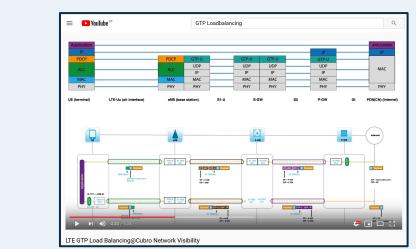
Filter on GTP inner IP Address range to drop traffic from/to LTE modes.


Application filtering inside GTP Tunnel



Cubro G5+ allows direct access to application information inside GTP by using GTP inner UDP filtering. - e.g. DNS.

This is a simple and scalable solution to offload irrelevant traffic from the probes and thus saves costs.


n x 100G (S1-U and S11)

GTP-U load-balancing

- Usually the S1-U interface is the most loaded on a mobile network.
- To distribute user-plane S1-U traffic to various probes is of key importance.
- Session-aware load-balancing from UE point of view is critical. Check our YouTube on GTP Load-balancing <u>https://youtu.be/4UXhaxi1OMw</u>
- Cubro G5 series handles GTP load-balancing in hardware to support Tbit/s processing

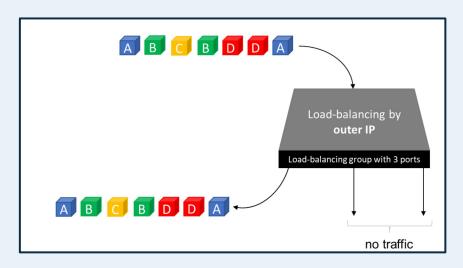
power.

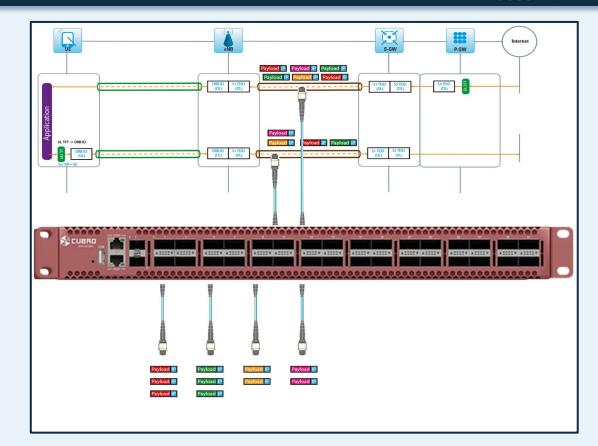
Load-balancing - some more details

Hash-key calculation

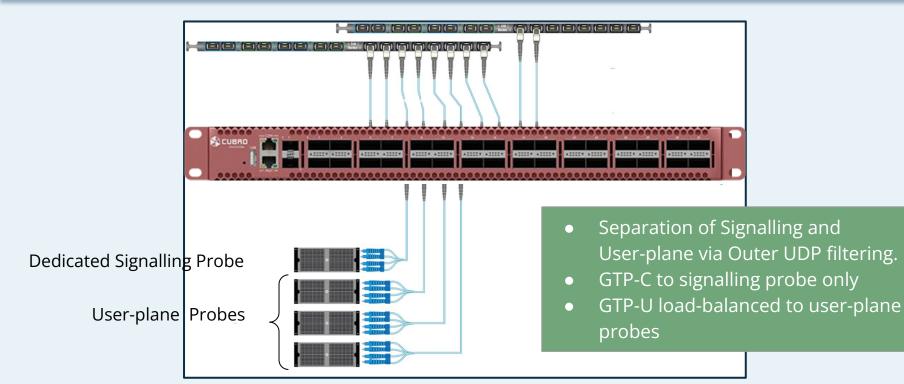
To cope with a wide range of requirements, the EXA48600 & EXA32100 allow various methods to calculate the hash-key. Hash-keys are used to define the load-balancing behaviour among the various members in the load-balancing group. For example, if the hash-key is configured as "IP Source Address", the hashing would be performed based on the source IP address of the packet only. Therefore, all packets with the same source IP address will be available at the same physical output port. The EXA48600 and EXA32100 support following hash-key calculation methods:

Hash-key calculation method	Hash-key calculation based on	Remark			
I3-src	full IP Src Addr				
l3-dst	full IP Dst Addr				
I3-src-dst	full IP Src & IP Dst Addr				
I4-src-dst	full Layer 4 Src & Dst Port	Upstream & downstream direction give			
four-tuple	full IP Src & Dst Addr & Layer 4 Src & Dst Port				
four-tuple-m8	middle 8 Byte of IP Src & Dst Addr & full Layer 4 Src & Dst Port	DIFFERENT hash results -> upstream & downstream is split apart -> not session aware E.g. 10.0.0.1 talks to 10.0.0.2: Hash result = x			
five-tuple	full IP Src & Dst Addr & Layer Protocol & Layer 4 Src & Dst Port				
I3-src-dst-m8	middle 8 Byte IP Src & IP Dst Addr				
five-tuple-m8	middle 8 Byte IP Src & Dst Addr & Layer Protocol & Layer 4 Src & Dst Port	10.0.0.2 talks back to 10.0.0.1: Hash result = y			
		-			
13-src-dst-symmetric	full IP Src & IP Dst Addr				
I4-src-dst-symmetric	full Layer 4 Src & Dst Port	Upstream & downstream direction give SAME hash results -> upstream & downstream stay together-> session aware E.g. 10.0.0.1 talks to 10.0.0.2: Hash result = x 10.0.0.2 talks back to 10.0.0.1: Hash result = x			
four-tuple-symmetric	full IP Src & Dst Addr & Layer 4 Src & Dst Port				
four-tuple-m8-symmetric	middle 8 Byte of IP Src & Dst Addr & full Layer 4 Src & Dst Port				
five-tuple-symmetric	full IP Src & Dst Addr & Layer Protocol & Layer 4 Src & Dst Port				
I3-src-dst-m8-symmetric	middle 8 Byte IP Src & IP Dst Addr				
five-tuple-m8-symmetric	middle 8 Byte IP Src & Dst Addr & Layer Protocol & Layer 4 Src & Dst Port				


Check the application note below to find detailed information on how load-balancing works.



- The monitoring session for a user will be interrupted when the customer is moving to another location.
- Due to the small amount of outer IPs, the load-balancing could be asymmetric. This means the output ports can be overloaded which causes packet drop and thus bad monitoring quality.



Solution - Load-balancing by means of GTP inner IP

Mobile traffic monitoring - full picture

Cubro G5 plus is by far the most complete Advanced NPB for 400G applications available. It offers state-the-art functionality to cope with the widest range of applications.

- High port-density and high throughput applications like seen in mobile telecom environments
- Overlay network traffic handling such as tunnel removal, inner tunnel filtering and load-balancing
- Traffic aggregation and filtering
- Break-out to existing 10G, 25G, 50G and 100G equipment

We have operations in all time zones. Reach us at: <u>support@cubro.com</u>